
Pre-copy Based Live Migration Using Lossless Compression Algorithm

Ei Phyu Zaw
University of Computer Studies, Yangon

zaw.eiphyu@gmail.com

Abstract

Virtualization is a methodology of logically
dividing computer resources. By emulating a
complete hardware system, from processor to
network card, each virtual machine can share a
common set of hardware. It allows multiple virtual
machines, with heterogeneous operating systems to
run side by side on the same physical machine.
Migration operation system instance across distinct
physical hosts is a useful tool for administrators of
data centers. . Live migration is done by
performing most of the migration while the
operating system is still running, achieving very
little downtime. By carrying out the majority of
migration while OSes continue to run, we achieve
impressive performance with minimal service
downtime and total migration time. In this paper,
we propose the design, implementation, and
evaluation of pre-copy based live migration using
lossless compression algorithm for virtual
machines (VMs) across a Gigabit LAN.

1. Introduction

Today’s IT departments are under increasing
pressure to manage and support expanding
computer resources while at the same time
reducing costs. Virtualization technology, which
lets multiple operating systems run concurrently on
the same physical server, has become a broadly
accepted method to meet these requirements. By
converting under-utilized physical servers into
virtual machines that run on a single physical
server, organizations can reduce space, power and
hardware costs in the data center. Because virtual
machines are generally much faster to recover in a
disaster than physical computers are, virtualization
also increases server uptime and reliability.

 A virtual machine is a software
implementation of a machine (computer) that
executes programs like a real machine. It was
originally defined as "an efficient, isolated
duplicate of a real machine". An essential
characteristic of a virtual machine is that the
software running inside is limited to the resources
and abstractions provided by the VM.
Virtualization is popular, particularly among the
data center and cluster computing communities.
Migrating operating system instances across

distinct physical hosts is a useful tool for data
centers administrators. It allows a clean separation
between hardware and software, and facilitates
fault management, load balancing, and low-level
system maintenance.

The software layer providing the virtualization
is called a Virtual Machine Monitor (VMM) or
hypervisor. From Fig.1, the virtualization platform
is installed directly onto the computer‘s hardware
provide a platform on which one or more virtual
machines using hypervisor architecture. It can be
created with a unique guest operating system and
its own set of applications installed It virtualizes
all of the resources of a physical machine, thereby
defining and supporting the execution of multiple
virtual machines [13].

Figure1. Hypervisor Virtualization Architecture

 In a VM-based cluster, multiple virtual
machines share a physical resource pool. Due to
dynamically varying workloads, some nodes are
often under-utilized, while others may become
heavily-loaded. In various application scenarios,
VM migration is expected to be fast and VM
service degradation is also expected to be low
during migration. Live migration is a key feature of
system virtualization technologies. In this paper,
we focus on VM migration within a cluster
environment where a network-accessible storage
system (such as SAN or NAS) is employed. Only
memory and CPU status needs to be transferred
from the source node to the target one. Live
migration techniques in the state of the art mainly
use pre-copy approach which first transfers all
memory pages and then copies pages just modified
during the last round iteratively. VM service
downtime is expected to be minimal by iterative

copy operations but total migration time is
prolonged. The above issue in pre-copy approach is
caused by the significant amount of transferred data
during the whole migration process.

This paper presents a novel approach to
optimize live virtual machine migration based on
pre-copy algorithm. We first use memory
compression to provide fast VM migration. Virtual
machine migration performance is greatly
improved by cutting down the amount of
transferred data.

The rest of this paper is organized as follows.
Section 2 describes the related work. In section 3,
we discuss the live VM migration. Section 4 the
proposed system is described. Finally section 5
concludes the paper.

2. Related Work

This section briefly describes some of the
different architectures which have implemented
virtual machine migration techniques.

Xen supports Live Migration [3]. It is a useful
feature and natural extension to virtualization
platforms that allow for the transfer of a VM from
one physical machine to another, with little
downtime of the services hosted by the VM. Live
migration transfers the working state and memory
of a VM across the network, while they are
running.

Xen also supports high performance VM
migration by using Remote Direct Memory Access
(RDMA) [9]. It offers performance increase in VM
migration by avoiding TCP/IP stack processing
overhead. RDMA implements a different transfer
protocol, where origin and destination VM buffers
must be registered before any transfer operations,
reducing it to “one sided” interface. Data
communication over RDMA does not need to
involve CPU, caches, or context switches. This
allows migration to be carried out with minimum
impact on guest operating systems and hosted
applications.

Zap [2] supports transparent migration of
legacy and networked applications. Zap provides a
thin virtualization layer on top of the operating
system that introduces a Process Domain (pod)
abstraction. A pod represents a process group with
the same virtualized view of the system and a
private namespace. This virtualized view associates
virtual identifiers with OS resources such as PIDs
and network addresses. This decouples processes in
a pod from host dependencies, and forms the basic
unit of migration.

Internet Suspend-Resume (ISR) technique [4]
looks to exploit temporal locality, as memory states
are likely to have considerable overlap in the
suspended and the resumed instances of the VM.
Temporal locality refers to the fact that the memory

states differ only by the amount of work done since
the VM was last suspended before being initiated
for migration. To exploit temporal locality each file
in the file system is represented as a tree of small
sub-files. A copy of this tree exists in both the
suspended and resumed VM instances. Predictably,
the downtime (the period during which the service
is unavailable due to there being no currently
executing instance of VM) is high, compared to
some of other techniques.

The approach best suited for live migration of
virtual machines is pre-copy. These include
hypervisor-based approaches from VMware[6],
Xen[3], KVM[8], OS-level approaches that do not
use hypervisors from OpenVZ[9]. Pre-copy
technique incorporates iterative push phases and a
stop-and-copy phase which lasts for a very short
duration. In short, the pages to be transferred
during round ‘n’ are only the ones dirtied during
round ‘n-1’ .

Two different pre-copy techniques have been
implemented over the Xen: Managed Migration
and Self Migration [3]. In case of managed
migration, the migration is performed by the
daemons running in the management VMs of the
source and the destination. These daemons are
responsible for creating a new VM on the
destination machine, and coordinating transfer of
live system state over the network. In the initial
round, all the pages are transferred and
subsequently only those pages that were dirtied in
the previous rounds (as indicated by a dirty bitmap)
are migrated. Xen uses shadow page tables to log
dirty pages [5].

Another novel strategy post-copy is also
introduced into live migration of virtual machines
[11]. In this approach, all memory pages are
transferred only once during the whole migration
process and the baseline total migration time is
achieved. But the downtime is much higher than
that of pre-copy due to the latency of fetching
pages from the source node before VM can be
resumed on the target.

Techniques for reducing the downtime during
memory migration have been suggested over
Capsule [10]. These include optimization features
which employ demand-paging, along with a clever
usage of an algorithm known as ballooning. The
algorithm eliminates or pages out less useful data
in a system, which can be implemented in the
virtual memory manager of the OS. Ballooning
helps in reducing the size of the compressed
memory state and this reduces the start-up time
after migration. Certain disadvantages may arise in
cases where the pages holding critical cached data,
dirty buffers or active data are immediately used
after migration.

3. Live VM Migration

Virtual machine migration takes a running
virtual machine and moves it from one physical
machine to another. This migration must be
transparent to the guest operating system,
applications running on the operating system, and
remote clients of the virtual machine.

Live Migration migrate OS instances including
the applications that they are running to alternative
virtual machines freeing the original virtual
machine for maintenance. It rearranges OS
instances across virtual machines in a cluster to
relieve load on congested hosts without any
interruption in the availability of the virtual
machine.

A key challenge in managing the live
migration of OS instances is how to manage the
resources which include networking, storage
devices and memory.

Networking: In order for a migration to be
transparent all network connections that were open
before a migration must remain open after the
migration completes. To address these
requirements we observed that in a cluster
environment, the network interfaces of the source
and destination machines typically exist on a single
switched LAN.

Storage devices: We rely on storage area
networks (SAN) or NAS to allow us to migrate
connections to storage devices. We assume that all
physical machines involved in a migration are
attached to the same SAN or NAS server. This
allows us to migrate a disk by reconnecting to the
disk on the destination machine.

Memory: Memory migration is one of the most
important aspects of Virtual machine migration.
Moving the memory instance of the VM from one
physical state to another can be approached in any
number of ways. But traditionally, the concepts
behind the techniques tend to share common
implementation paradigms. Migrating memory,
which can be in the range of hundreds of
megabytes to a few gigabytes in a typical system
today, needs to be done in an efficient manner.

The memory migration in general can be
classified into three phases:
Push phase: The source VM continues running
while certain pages are pushed across the network
to the new destination. To ensure consistency, the
pages modified during the transmission process
must be re-sent.
Stop-and-copy phase: The source VM is stopped,
pages are copied across to the destination VM, and
then the new VM is started.

Pull phase: The new VM starts its execution, and
if it accesses a page that has not yet been copied,
this page is faulted in, across the network from the
source VM.

4. The Proposed System

The Logical steps that we execute when
migration an OS are summarized in Figure 2. We
take a conservative approach to the management of
migration with regard to safety and failure
handling. We view the migration process as a
transactional interaction between the two hosts
involved:

• Step-1: A request is issued to migrate an
OS from host A to host B. We initially
confirm that the necessary resources are
available on B and reserve a VM container
of that size.

• Stage-2: During the first iteration, all

pages are transferred from A to B using
lossless compression algorithm.
Subsequent iterations copy only those
pages dirtied during the previous transfer
phase.

• Stage-3: We suspend the running OS

instance at A and redirect its network
traffic to B. CPU state and any remaining
inconsistent memory pages are then
transferred. At the end of this stage there
is a consistent suspended copy of the VM
at both A and B. The copy at A is still
considered to be primary and is resumed
in case of failure.

• Stage-4: Host B indicates to A that it has

successfully received a consistent OS
image. Host A acknowledges this message
as commitment of the migration
transaction, host A may now discard the
original VM, host B becomes the primary
host and now activated.

This approach to failure management ensures
that at least one host has a consistent VM image at
all times during migration. It depends on the
assumption that the original host remains stable
until the migration commits, and that VM may be
suspended and resumed on that host with no risk of
failure.

The main contribution of the paper is that we
design and implement a novel approach, memory
compression techniques based on pre-copy to
minimize the total migration time of live migration.

Figure 2. The design overview of our proposed
system

Compression technique can be used to

significantly improve the performance of live
migration. The compression algorithm is first
lossless because the compressed data need to be
exactly reconstructed. Second, the overhead of
memory compression should be as small as
possible. If the overhead outweighs the advantage
of memory compression, live VM migration would

not get any benefit from it. A compression
algorithm with low overhead is ordinarily simple
but difficult to achieve high compression ratio. So,

how to balancing the relationship between
overheads and compression effects is crucial to
design a good algorithm for live VM migration.

We consider the design options for migration
OSes running services with the Lemple-zip
Encoding compression algorithm [1]. LZ
encoding is known as dictionary-based encoding.
The idea is to create a dictionary (table) of strings
used during the communication session. The
compression algorithm extracts the smallest
substring that cannot be found in the dictionary
from the remaining non-compressed string. It is
based on the notion that data occur repeatedly in
the message being compressed. It is also a lossless
compression algorithm. So, if we compress data
using the algorithm, and then decompress the
compressed version, the result will be an exact
copy of the original data.

The LZ compression algorithm is shown in
Figure3.

 Figure 3. LZ lossless compression algorithm

5. Conclusion

 By integrating live OS migration into the
virtual machine monitor (VMM), we enable rapid
movement of interactive workloads within clusters
and data centers. Live migration makes it possible
to use VMs with less effort and greater flexibility
than before. These benefits translate to time and
money savings in any virtual machines.
 In this paper, we have proposed the design of
pre-copy based live migration which uses data
compression technique. Because the smaller
amount of data is transferred, the total migration
time and downtime will be both decreased
significantly. Service degradation will also be
decreased greatly. So, the end-to-end time of the
migration and the impact on VM running on the
machines involved in the migration can be
controlled by managing the memory resource.

6. References

[1] Jacob Ziv and Abraham Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on Information
Theory, 23(3):337–343, 1977.

[2] S. Osman, D. Subhraveti, G. Su, and J. Nieh, The Design
and Implementation of Zap: A System for Migrating Computing
Environments, 5th Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA, December
2002.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. July, C.
Limpach, I. Pratt, and A. Warfield, Live Migration of Virtual
Machines, Proceedings of the 2nd USENIX Symposium on
Networked Systems Design and Implementation, 2005

[4] M. Kozuch, M. Satyanarayanan, Internet Suspend/Resume,
Fourth IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, NY, June 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, Xen and the Art of
Virtualization, Proceedings of the Nineteenth ACM Symposium
Operating System Principles (SOSP19), pages 164.177. ACM
Press, 2003.

[6] L IM , B.-H., AND HUTCHINS, G. Fast transparent migration
for virtual machines. In Usenix, Anaheim, CA (2005), pp. 25–25

[7] M. Nelson, B. Lim, and G. Hutchines, “Fast transparent
migration for virtual machines,” in Proceedings of the USENIX
Annual Technical Conference (USENIX’05), 2005, pp. 391–
394.

[8] KIVITY , A., KAMAY , Y., AND LAOR, D. kvm: the linux
virtual machine monitor. In Proc. of Ottawa Linux Symposium
(2007).

[9] OPENVZ. Container-based Virtualization for Linux,
http://www.openvz.com/.

[10] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum, Optimizing the Migration of Virtual
Computers, Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, Boston, Massachusetts,
USA, December 9–11, 2002

[11] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning,” in Proceedings of the ACM/Usenix
international conference on Virtual execution environments
(VEE’09), 2009, pp. 51–60

[12] B. Barham , B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, A. Warfield, “Xen and the art of
virtualization,” In Proc. the 19th Int. ACM Symp. Operating
Systems Principles, New York, USA, ACM Press, 2003,
pp.164-177.

[13] R. J. Creasy, The Origin of the VM/370 Time-sharing
System, IBM J. RES. DEVELOP., Vol. 25, No. 5, September
1981.

[14] R. Goldberg, “Survey of virtual machine research,” IEEE
Computer, pp. 34–45, Jun. 1974.

[15] M. Ekman and PerStenstrom, “A robust main-memory
compression scheme,” in Proceedings of the International
Symposium on Computer Architecture (ISCA’05), 2005, pp.
74–85..

